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It has been recognized that the subgrid-scale (SGS) parameterization represents
a critical component of a successful large-eddy simulation (LES). Commonly used
linear SGS models produce erroneous mean velocity profiles in LES of high-Reynolds-
number boundary layer flows. Although recently proposed approaches to solving this
problem have resulted in significant improvements, questions about the true nature
of the SGS problem in shear-driven high-Reynolds-number flows remain open.

We argue that the SGS models must capture inertial transfer effects including
backscatter of energy as well as its redistribution among the normal SGS stress com-
ponents. These effects are the consequence of nonlinear interactions and anisotropy.
In our modelling procedure we adopt a phenomenological approach whereby the
SGS stresses are related to the resolved velocity gradients. We show that since the
SGS stress tensor is not frame indifferent a more general nonlinear model can be
applied to the SGS parameterization. We develop a nonlinear SGS model capable of
reproducing the effects of SGS anisotropy characteristic for shear-driven boundary
layers. The results obtained using the nonlinear model for the LES of a neutral
shear-driven atmospheric boundary layer show a significant improvement in predic-
tion of the non-dimensional shear and low-order statistics compared to the linear
Smagorinsky-type models. These results also demonstrate a profound effect of the
SGS model on the flow structures.

1. Introduction
Numerical simulation of turbulent flows represents an important research tool

in the studies of turbulence phenomena. Three-dimensional numerical simulations
of turbulent flows are usually classified as direct Navier–Stokes simulations (DNS)
and large-eddy simulations (LES). In a DNS all relevant scales of motions are
numerically resolved and therefore a detailed representation of a turbulent flow field
can be obtained. The integral-scale Reynolds number is directly proportional to the
range of scales in the flow. Therefore, due to the limitations of the present-day
computers, DNS is limited to the flows characterized by relatively low Reynolds
numbers that do not exceed 103. At such low Reynolds numbers the scaling regime
of turbulence cannot be reached and therefore the Reynolds-number-independence
hypothesis cannot be invoked. While low Reynolds numbers are characteristic for
many different flows encountered in engineering applications, turbulent flows in the
atmosphere are characterized by Reynolds numbers that are orders of magnitude
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greater. A typical value for flow in an atmospheric boundary layer is 108. The
range of scales in such a flow are far beyond the computational capabilities of
present-day computers. The alternative to DNS is LES. In LES, only large energy-
containing eddies are numerically resolved. This is accomplished by filtering-out
the high-frequency component of the flow field and using the low-pass-filtered form
of the Navier–Stokes equations to solve for the large-scale component only. The
effects of the filtered-out small-scale fields on the resolved fields are accounted for
through the so-called subgrid-scale (SGS) model. The SGS model represents the
effects of the interactions between the resolved and unresolved component of the flow
field. SGS parameterizations are necessarily based on simplifying assumptions and
phenomenological theories and therefore represent the main source of uncertainties
and errors in LES.

A critical review of the development of LES and related SGS models has recently
been presented by Mason (1994), where he lays out the basic requirements that should
be satisfied by a successful LES. Although it cannot provide detailed information
about all the scales in the turbulent flow field, LES should result in correct low-order
statistics of the flow and mean profiles of the velocity, temperature or any other
passive or active scalars advected by the flow field. In addition it should give accurate
turbulent stresses and fluxes of related variables, thus providing important information
about the turbulent transport and the global features of the flow. Furthermore we
expect LES to accurately reproduce the main spectral characteristics of the resolved
component of the flow field. However, the first LES of turbulent channel flows
(Deardorff 1970; Schumann 1975) showed that even obtaining correct mean velocity
profiles cannot be guaranteed. Their LES resulted in an excessive shear in near-wall
regions of the flow. Deardorff found that the velocity profile is sensitive to the exact
values of the SGS model parameters. Schumann went a step further and in order to
correct the errors added a new term to the SGS model. Since the additional term could
be viewed as a Reynolds stress model, the actual LES represented a combination
of a Reynolds-averaged model near the walls of the channel and a true LES in the
interior of the flow field. Successful LES of moderate-Reynolds-number boundary
layer flows (Moin & Kim 1982) and convective atmospheric boundary layers (Moeng
1984), outweigh the early problems.

Recently Mason & Thomson (1992) revisited the problem and developed the
stochastic backscatter SGS model. Their work was followed by Sullivan, McWilliams
& Moeng (1994), who used a modification of Schumann’s (1975) model to correct
erroneous velocity profiles. Both groups recognized that the intrinsic complexities of
inhomogeneous turbulence near the bounding surfaces was reflected in anisotropy
due to the shear and the role of the reverse flow of turbulent kinetic energy (TKE).
However, in the attempt to develop a better SGS parameterization these two groups
took different paths. Mason & Thomson (1992) focused their attention on the features
of the energy transfer in LES characterized by an under-resolved energy production
in the surface layer and pointed out the necessity of accounting for the flow of
energy from the small, unresolved scales of motion toward large, resolved scales by
implementing stochastic backscatter of energy. Such an approach was previously
suggested by Leith (1990) for a plane shear mixing layer. Sullivan et al. (1994) argued
that since the flow field near the rigid boundary is under-resolved, it is justified
to adopt the Reynolds stress approach in the surface region. They combined the
eddy-viscosity model (zeroth-order model) for the mean resolved turbulent stress and
the SGS kinetic energy version (Lilly 1967) of the linear SGS model. They chose the
anisotropy factor as a weighting parameter to assure a smooth transition between
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two models. The fact that the same goal – correct mean velocity profiles – can
be achieved using two different approaches prompts a detailed analysis of the SGS
effects in the regions of the flow dominated by shear and therefore characterized by
anisotropy.

It follows that the LES produces satisfactory results when the main TKE producing
mechanism is well resolved. This is the case in simulations of the convective phenom-
ena or in moderate-Reynolds-number flows. When the eddies contributing to the TKE
production mechanism are well resolved then the main role of the SGS component is
to drain the proper amount of the energy from the resolved flow field. In those cases
the SGS effects are small or even insignificant. However, in inhomogeneous shear-
driven flows such as those encountered in the surface layers of atmospheric boundary
layers the significant component of the TKE production is not fully resolved. The
role of the SGS component in such flows often dominates that of the resolved fields.
Therefore we will examine more closely the SGS modelling problem. We undertake
this task with a goal of isolating and re-examining the properties of SGS models and
develop a new SGS model that would satisfy the aforementioned requirements.

In this paper we present an analysis of the effects of the SGS component. We exam-
ine the requirements that an SGS model has to satisfy. We present the development
of a nonlinear SGS model and demonstrate its performance in LES of a shear-driven
boundary layer. The nonlinear SGS model represents an attempt to address both
the effects of anisotropy due to the shear and the role of backscatter of energy in
under-resolved flow regions.

2. Subgrid-scale modelling problem
In this section we present the main ideas that shaped the development of LES

and provide a critical analysis of the methods and techniques involved in the SGS
modelling problem. In our analysis we consider incompressible flows characteristic for
atmospheric boundary layers. For such flows the momentum conservation equation
for the resolved velocity field in a rotating frame of reference is

∂ũri
∂t

+ ũrj
∂ũri
∂xj

= −1

ρ

∂p̃r

∂xi
− ∂σij

∂xj
− 2εijkζj ũ

r
k. (2.1)

Here, ζ is the rotation rate of the non-inertial coordinate system (e.g. Earth’s rotation).
The continuity equation is

∂ũri
∂xi

= 0. (2.2)

Assuming neutrally buoyant conditions, we have neglected buoyancy effects that can
otherwise be accounted for via the Boussinesq approximation. In the equations (2.1)
and (2.2) superscript r denotes resolved fields obtained by filtering total fields so that
any filtered field f̃r is defined as

f̃r(x) =

∫
V

G(x− ξ) f̃(ξ)dξ. (2.3)

Here, G(x) is a filter function. In equation (2.1) σij is the anisotropic component of
the SGS stress tensor τij:

σij = τij − 1
3
τkk. (2.4)

The SGS stress τij is defined as
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τij = (ũiũj)
r − ũri ũrj

= (ũri ũ
r
j)
r − ũri ũrj +

[
(ũri ũ

s
j + ũsi ũ

r
j) + ũsi ũ

s
j

]r
. (2.5)

The isotropic component of the SGS stress 1
3
τkk is added to the pressure p̃r . In

equation (2.5) the superscript s denotes the subgrid fields defined as the difference
between the total and filtered fields:

ũsi = ũi − ũri . (2.6)

To close the system of partial differential equations (2.1) and (2.2) and solve for the
resolved velocity we need additional equations for the resolved pressure field and
the SGS stresses. The pressure field can be determined from the Poisson equation
obtained by taking the divergence of the momentum conservation equation (2.1).

The fundamental question of LES is whether it is possible to express the anisotropic
SGS stresses as a functional of the resolved fields. The theory of inertial manifolds
(Foias, Manley & Temam 1988) provides a mathematically rigorous framework
for constructing closures for systems of partial differential equations truncated in
function space. While an approximate inertial manifold can be constructed for the
two-dimensional Navier–Stokes system (Foias, Manley & Temam 1991), the extension
to a three-dimensional case has not been accomplished yet. Therefore we have to
resort to modelling SGS terms using either statistical or phenomenological theories. In
general when developing a SGS model we have to assume that any external forcing
is either resolved in our simulation or its subgrid component is negligible. Any
forcing that has a significant subgrid component can render rational SGS modelling
impossible due to the unpredictable effects it can have on the energy transfer between
resolved and subgrid eddies.

The foundations of SGS modelling are usually tied to the work of Smagorinsky
(1963). He used an eddy-viscosity gradient-diffusion concept to model the SGS effects
in a global circulation model. The eddy-viscosity gradient-diffusion concept was first
conceived by Boussinesq (1877) and has been extensively used in the framework of
Reynolds-averaged Navier–Stokes equations, which can be viewed as a limiting case
of the filtered Navier–Stokes equations (2.1) if the ensemble average is approximated
by the volume average as is commonly done and the filter G(x) becomes a volume
average operator, 1/V. In this limit the SGS stress given by equation (2.5) reduces
to the Reynolds stress

τij

∣∣∣
G=1/V

=
[
ũsi ũ

s
j

]r ∣∣∣
G=1/V

= 〈uiuj〉 = Rij . (2.7)

Here, V is the volume of the flow domain while angle brackets represent an ensemble
average approximated by a volume or time average. The fluctuating component of
the velocity is

ui = ũi − 〈ũi〉. (2.8)

Lilly (1966, 1967) developed two different models for the SGS effects in LES. The
first model was based on the assumption that the turbulence under consideration has
reached the equilibrium state in which production is balanced by dissipation and the
inertial range is developed instantaneously. The anisotropic component of the SGS
stress is linearly related to the rate of strain:

σij = −2νeSij . (2.9)
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Here Sij is strain rate tensor defined as

Sij =
1

2

(
∂ũri
∂xj

+
∂ũrj

∂xi

)
. (2.10)

Now the modelling problem reduces to determining the appropriate eddy viscosity νe.
The model has to be dimensionally consistent. Following the mixing-length concept
of Prandtl (1925), Smagorinsky (1963) related the local eddy viscosity to the local
rate of strain magnitude

νe = (Csl)
2(2SklSlk)

1/2. (2.11)

Here l is the characteristic length scale and Cs is the Smagorinsky constant. Lilly
designed a different model for the turbulence in which an equilibrium range is not
developed instantaneously. This is usually the case in highly inhomogeneous flows.
For the subgrid-scale eddy-viscosity coefficient, Lilly adopted Prandtl’s modified eddy-
viscosity relation whereby the eddy-viscosity coefficient is related to the product of a
characteristic length scale (the grid-cell size) and a characteristic velocity scale (the
square root of the turbulent kinetic energy)

νe = Cel (ersgs)
1/2. (2.12)

In this case, an additional partial differential equation for the SGS kinetic energy is
solved along with the Navier–Stokes equations:

∂ersgs

∂t
+

[
urj
∂ersgs

∂xj

]r
= −τij

∂uri
∂xj
−
∂
[
usi (esgs + ps/ρ)

]r
∂xi

− ε. (2.13)

The SGS turbulent kinetic energy esgs is defined as

esgs = 1
2

[
(ũl ũl)

r − ũrl ũrl
]
. (2.14)

In equation (2.13) ε denotes the dissipation rate which has to be modelled along with
the transport term (the second term on the right-hand side of the equation). For
both models, Lilly analytically determined the model constants, which he considered
to be universal. The first model (2.11) is now usually referred to as the Smagorinsky
model while Lilly labelled the second model (2.12) the “turbulent energy model”.
Following the nomenclature used in Reynolds stress modelling, the turbulent energy
model would be equivalent to the one-equation closure where only one additional
prognostic equation for the TKE is solved along with the original system of equations.
We should point out that most of the work on LES and SGS modelling that followed
has roots in Lilly’s early work and its foundations: the Kolmogorov inertial-range
hypothesis, the notion of an eddy viscosity, and Prandtl’s mixing length theory.
Following the terminology of the constitutive theory we label the model defined by
equations (2.9) and (2.11) or (2.12) a linear model since on a tensor level it linearly
relates the SGS stress tensor to the strain rate tensor with an eddy viscosity as a
proportionality parameter. The adoption of such a simple model for SGS stresses in
LES is justified by the assumption that the local SGS effects cannot significantly affect
the resolved velocity field and that only global energy transfer has to be accurately
represented by the model.

The parameters in Boussinesq eddy-viscosity-based models are adjusted to satisfy
global energy balances. Such models predict only the net energy transfer from large
scales to small scales. However, DNS results have confirmed that the local inverse
transfer of energy is possible (e.g. Domaradzki, Liu & Brachet 1993). The backscatter
of energy can be associated with the formation of the large coherent structures in the
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flow field. Mason & Thompson (1992) introduced stochastic backscatter effects in their
SGS model. They argued that the stochastic fluctuations of the SGS stress divergence
and their correlation with the resolved velocity field are essential for obtaining correct
low-order turbulent statistics using LES. Recently Piomelli, Yunfang & Adrian (1996)
studied the SGS energy transfer and associated structures in low-Reynolds-number
wall-bounded flows. They found that in the logarithmic region of the boundary layer
both forward and backward energy transfer are associated with events known as
ejections where the low-momentum fluid from the near-wall region is ejected into the
inner region of the boundary layer. Piomelli et al. (1996) therefore argued that the
stochastic backscatter model alone is not sufficient since it cannot account for the
deterministic structures in the near-wall region.

In the following sections we focus on problems related to the LES of high-
Reynolds-number boundary layer flows. More specifically we attempt to find an
explanation for the erroneous velocity profiles observed in the LES of atmospheric
boundary layers and offer a possible solution to that problem. In the first LES of
high-Reynolds-number channel flow performed by Deardorff (1970), he noticed that
the mean velocity profiles did not follow experimental observations. His LES could
not accurately reproduce the logarithmic layer. Later, Schumann (1975) confirmed
that LES consistently over-predicted the mean velocity magnitudes and consequently
mean wind shear.

In our analysis we assume that the filter used is a wave cut-off filter in two homo-
geneous directions. In the inhomogeneous direction normal to the solid boundary,
no explicit filters are applied. The wave cut-off filter gives resolved and subgrid fields
that are uncorrelated.

The LES results obtained using linear SGS models show that the ensemble-average
tangential turbulent stresses (total as well as resolved) are accurately reproduced.
This may be explained by the fact that the mean tangential stresses have to satisfy
the mean momentum equations of the form

∂(〈ur1ur3〉+ 〈σ13〉)
∂x3

= f(U2 −Ug2) and
∂(〈ur2ur3〉+ 〈σ23〉)

∂x3

= −f(U1 −Ug1). (2.15)

Here, f is the Coriolis parameter (f = 2ζ sinφ, where φ is the latitude), while Ugj

is the jth component of the geostrophic wind. A relation similar to (2.15) can be
written for the normal SGS stress component 〈ur3ur3〉+〈σ33〉. In flows driven by a mean
pressure gradient, a similar relation exists. These simple relations ensure that the total
turbulent stress profiles obtained are correct. No such relation exists involving the
mean normal SGS stress components 〈σ11〉 and 〈σ22〉 or tangential component 〈σ12〉.

By analogy with the ensemble-mean streamwise velocity variance equation for
horizontally homogeneous turbulent flows, we can write the conservation equation
for the corresponding component of the resolved turbulent stress ur1u

r
1. Assuming that

the x-coordinate is aligned with the mean wind in the surface layer it follows that

〈ur1ur3〉
∂U1

∂x3

= −1

2

∂〈ur1ur1ur3〉
∂x3

− 1

ρ

〈
ur1
∂pr

∂x1

〉
−
〈
ur1
∂(σ1j − 〈σ1j〉)

∂xj

〉
. (2.16)

Here uri , p
r , are fluctuating components of the resolved velocity and pressure fields.

Equation (2.16) is the lowest-order equation that relates the mean shear to the SGS
stress. If the resolved tangential turbulent stress in an LES is accurately represented
then we can conclude that only the fluctuating component of the SGS stresses
and their correlation with the resolved velocity field can directly affect the mean
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velocity profile through (2.16). The fluctuating component of the SGS stress therefore
represents a possible cause of erroneous mean wind profiles.

3. Constitutive theory and the SGS modelling problem
From the first attempts by Boussinesq to the present phenomenological turbulence,

modelling has followed the ideas of constitutive theories for viscous stresses in fluids.
Seeking the proper turbulence model in the framework of models for molecular dif-
fusion was motivated by observations which showed that turbulence enhances mixing
and diffusion of momentum, temperature and passive scalars. The effort to develop
more effective models for turbulent stresses has long focused on defining a proper
eddy-viscosity coefficient, in spite of the evidence that the gradient diffusion itself
cannot account for some important phenomena observed in turbulence. Boussinesq
eddy-viscosity models cannot account for the normal stress effects (Lumley 1970) and
unless negative eddy viscosities are allowed (Germano et al. 1991; Piomelli et al.
1991) they are absolutely dissipative. Absolute dissipation is in contradiction with
the fact that the inertial transfer of energy can result in a local backscatter of energy
where subgrid effects are the source of the resolved TKE.

The modelling procedure for the Newtonian (linear) fluids was introduced by Stokes
in 19th century. A more general and rigorous constitutive theory was developed much
later (Rivlin & Ericksen 1955; Coleman & Noll 1960; Truesdell & Noll 1965). Follow-
ing Truesdell’s (1977) development of the constitutive relations for simple fluids (fluids
without structure), we list the requirements that should be satisfied by the SGS model.

According to Truesdell (1977), when modelling simple fluids three main principles
must be observed: the principle of determinism, the principle of local action, and
the principle of material frame indifference. In turbulence modelling adhering to the
principle of determinism is often abandoned in favour of the stochastic approach (e.g.
Mason & Thomson 1992; Schumann 1995). SGS turbulent fields are the consequence
of the evolution of a complex nonlinear dynamical system (cf. Foias et al. 1988)
and therefore appear random. However, the evolution of SGS fields is governed by
deterministic equations forced by their interaction with the deterministic large-scale
fields. These interactions can be modelled using the stochastic or the deterministic
approach or their combination. We argue that as long as the turbulence production
mechanism is known and the production itself is well resolved and can be represented
in terms of resolved flow variables, then observing this principle when modelling
SGS stresses is justifiable. The principle of local action is sometimes disputed due to
the fact that turbulence can result in non-local effects. However, integral forms of
constitutive relations that can account for memory effects in materials both satisfy
the principle of local action (cf. Truesdell 1977) and are able to reproduce non-
local effects observed in turbulent flows. This fact is apparent when we take into
consideration sensitivity to initial conditions characteristic for nonlinear dynamical
systems. The third principle which implies that the response of the fluid is the same
for all observers requires a closer look. The frame indifference is equivalent to the
homogeneity and isotropy of the space (not the fluid or the flow) implying that there
are no preferred directions or placements in it.

Besides satisfying these three principles, the constitutive relation must be consistent
with the general principles of mass conservation, momentum, angular momentum,
and energy balance, as well as the second law of thermodynamics (positive, semi-
definite entropy). Also, it must be dimensionally consistent. In static equilibrium, a
fluid obeys the laws of Eulerian hydrostatics and the stress reduces to the normal
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stress only. Furthermore, in the absence of the integral angular momentum, the stress
tensor must be symmetric. Due to the symmetry and the material frame indifference
requirement the model for the anisotropic component of the viscous stress for simple
fluids (often called Reiner–Rivlin fluids) reduces to (Serrin 1959)

Σij = $1 S̃ ij + $2

(
S̃ ikS̃ kj − 1

3
S̃mnS̃mnδij

)
. (3.1)

Here, Σij is the anisotropic viscous stress tensor and S̃ ij is the strain rate tensor based
on the total velocity field. The rotation rate tensor does not enter this constitutive
relation since it is antisymmetric and tensor products involving the rotation rate
tensor are not frame indifferent. The functions $1 and $2 are scalar functions of
the principal invariants of the rate of strain tensor. Leigh (1962) pointed out that
the nonlinear stress component S̃ ikS̃ kj can reproduce the normal stress effects and
also result in negative entropy. Therefore the only model which satisfies all the
aforementioned constraints including positive definite entropy is the linear model for
which $2 = 0. Note that when $1 = ν = f(T ) the constitutive relation for the
Newtonian fluids is recovered, while when $1 = νe where νe is defined by (2.11)
Smagorinsky SGS model is obtained.

Rivlin (1957) was the first to suggest that the constitutive theory for nonlinear
simple fluids can be used in turbulence modelling. Such a theory can account for the
differences in normal viscous stresses and resulting secondary flows in low-Reynolds-
number flows in pipes with non-circular cross-sections. When drawing the analogy
between the conditions under which normal stress effects are observed in nonlinear
high-polymer solutions and turbulent flows, Rivlin conjectured that the turbulent
eddies subjected to shear undergo preferential orientation which leads to the observed
normal stress effects in turbulent shear flows. The preferential orientation of vortices
in sheared turbulent flows was later theoretically explained by a vortex stretching
and tilting mechanism (cf. Tennekes & Lumley 1972). The validity of this conceptual
picture was confirmed using DNS (Rogers & Moin 1987).

We show that when a constitutive theory is applied to the SGS modelling problem
the following requirements can be relaxed: the modelled SGS stress tensor does not
have to be frame indifferent and local negative entropy can be allowed. Depending
on the type of filter used to split the fields into resolved and SGS components an
additional realizability condition must be imposed (Vreman, Geurts & Kuerten 1994).
However, since we use a wave cut-off filter this condition does not have to be satisfied.

Lumley (1970) was the first to examine the implications of the constitutive theory
for simple fluids (3.1) on turbulence modelling. He presented an ad hoc argument
showing that frame indifference does not have to be satisfied in turbulence modelling.

Speziale (1985) showed that the SGS stress tensor defined by (2.5) is Galilean invari-
ant, i.e. invariant in all inertial frames of reference and consequently acceptable SGS
models must be Galilean invariant. However, it is easy to show (see the Appendix) that
the SGS stress does not satisfy frame indifference in rotating frames of reference. Any
flow with non-vanishing mean intrinsic vorticity, Wi = 2ζi + 〈ω̃i〉 6= 0, can be viewed
as a flow in a rotating frame of reference. This implies that SGS models for such flows
should not be frame indifferent. The effects of intrinsic vorticity are deterministic
and as such justify the deterministic phenomenological approach. As a consequence
nonlinear constitutive relations involving the rate of rotation tensor are admissible
models for SGS stresses. We therefore argue that a model based on the nonlinear
constitutive relation represents a viable choice for LES of boundary layer flows.
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Speziale (1981) demonstrated that frame indifference of the Reynolds stress is
restored in two-dimensional flows due to the existence of the velocity stream function.
In two-dimensional flows we can express the Coriolis term as the gradient of the scalar
potential 2Wψ, where ψ is the stream function. This scalar potential field can be
added to the pressure term and thus the frame indifference of the SGS term is restored.
In a three-dimensional flow the Coriolis term cannot be expressed as a gradient of
a scalar potential due to non-existence of a stream function. Numerical simulations
of isotropic turbulence subjected to rotation showed that the Coriolis effects reduce
the TKE dissipation rate (Bardina, Ferziger & Rogallo 1985; Cambon et al. 1994).
Although in these simulations the normal Reynolds stress components did not exhibit
a significant departure from isotropy the reduced inertial transfer of energy affected
the redistribution of energy among scales of motion. This redistribution of TKE can
be manifested as anisotropic partition of energy among different resolved and SGS
normal stress components. In the Appendix we show that Coriolis effects induced by
intrinsic vorticity can indeed cause increased anisotropy levels among SGS normal
stress components.

Using a reduced form of the constitutive relation for the nonlinear Rivlin–Ericksen
(Rivlin 1955) fluids, Pope (1975) developed a general eddy-viscosity hypothesis relating
the Reynolds stresses to a finite number of known tensors and scalars which are
functions of tensor invariants. In a three-dimensional case, according to Spencer
& Rivlin (1959) the Rivlin–Ericksen constitutive relation involves ten independent
tensors that are functions of the strain rate tensor and the rotation rate tensor. It also
includes five independent invariants. To make the modelling problem analytically
tractable, Pope studied the model including only three lowest-order tensors. Only
recently were Gatski & Speziale (1993), using the symbolic-algebra software package,
able to conduct the analysis of the full Rivlin–Ericksen constitutive relation applied
to the Reynolds stress turbulence closure.

Lund & Novikov (1992) performed an a priori analysis of the reduced nonlinear
constitutive relation involving five lower-order tensors. They used multiregressional
analysis to determine most appropriate functional forms for model coefficients. They
found that the nonlinear model resulted in higher correlations between actual and
modelled SGS stresses. However, when they used constant values of model coefficients
the nonlinear model gave only slightly higher correlations as compared to the linear
model. Lund & Novikov never used the nonlinear model in an LES. Here we point out
that Piomelli, Moin & Ferziger (1988) showed that a priori analysis cannot provide
detailed quantitative but only qualitative estimates of the SGS model performance.

A general nonlinear constitutive relation similar to that for Rivlin–Ericksen fluids
was presented by Speziale (1991) in the following form:

σij = −(C0l)
2

{
1

θ0

Sij +C1

(
SikSjk − 1

3
SmnSmn δij

)
+ C2

(
Sik Ωkj − Ωik Skj

)
+C3

(
ΩikΩkj − 1

3
ΩmnΩmn δij

)
+ C4

(
∂Sij

∂t
+ ũrk

∂Sij

∂xj

)}
. (3.2)

Here, θ0 is the time scale, Ωij is the rotation rate tensor based on the resolved velocity
field, and Ci are model parameters. Speziale (1987) also developed a nonlinear
K − ε model based on the frame indifferent form of (3.2). Wong (1992) suggested
combining Speziale’s nonlinear K−ε model with the Germano et al.’s (1991) dynamic
SGS model.

Finally, it should be pointed out that nonlinear models were also developed using
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formal expansion techniques like direct interaction approximation (Yoshizawa 1984)
and the renormalization group (Rubinstein & Barton 1990).

Due to the computational limitations it is not feasible to use the complete Rivlin–
Ericksen constitutive relation or relation (3.2) as a model for SGS stresses. We
therefore adopt the reduced model and use the same three tensor components as
Pope (1975) which are identical to the first three tensor components on the right-hand
side of (3.2). We eliminate the fourth term because it yields an erroneous prediction
for isotropic turbulence subjected to a solid-body rotation (Gatski & Speziale 1993).
The last term may be neglected assuming Taylor’s hypothesis, according to which
advection of a quantity (in this case the rate of strain) by the mean velocity field is
balanced by its time rate of change. It is difficult to justify such an assumption in LES
where advection is carried out by resolved velocity fields. However, the computational
burden of calculating the material derivative of the strain rate tensor is a prohibitive
factor and therefore we discard this term from our model.

The nonlinear model for the SGS stress is defined as

σij = −(Cs∆)2

{
2(2SmnSmn)

1/2Sij +C1

(
SikSkj − 1

3
SmnSmn δij

)
+C2

(
Sik Ωkj − Ωik Skj

)}
. (3.3)

Here, Cs is Smagorinsky constant and ∆ is a length scale related to the grid-cell size
(Moeng 1984). Since we are concerned with inhomogeneous high-Reynolds-number
boundary layer flows it is more appropriate to use the SGS TKE equation (2.13)
to determine the proper velocity scale for the transport coefficient associated with
the linear term. Then the corresponding model based on Lilly’s “turbulent energy
method” (2.12) is

σij = −Ce∆
{

2(ersgs)
1/2 Sij +

(
27

8π

)1/3

C2/3
s ∆

[
C1

(
SikSkj − 1

3
SmnSnm δij

)
+C2

(
Sik Ωkj − Ωik Skj

)]}
. (3.4)

Here the model parameter Ce is related to the Smagorinsky constant in the following
way (Lilly 1967):

Ce = π1/3

(
2

3CK

)1/2

C4/3
s =

(
8π

27

)1/3

C4/3
s , (3.5)

where CK denotes the Kolmogorov constant for which we assumed the experimentally
determined value CK ≈ 1.5. In a similar Reynolds stress model proposed by Pope
(1975), the model parameters (transport coefficients) were determined as a function
of both the turbulent kinetic energy and the dissipation rate.

The nonlinear model parameters C1 and C2 are determined so that the model
provides correct energy transfer and captures the normal stress effects observed in
homogeneous sheared flows.

4. Nonlinear SGS model parameters
Linear SGS models are characterized by only one model parameter, the Smagorin-

sky constant. The nonlinear SGS model presented in the previous section includes
three model parameters. In addition to the Smagorinsky constant, for the nonlinear



Subgrid-scale modelling of high-Reynolds-number boundary layers 161

model we have to determine the values of parameters associated with the second-
order term in the strain rate tensor and the term related to the product of the strain
rate tensor and the rotation rate tensor. However, we will show that these three
parameters are not independent. The Smagorinsky constant as well as the parameter
associated with the second-order term in the strain rate tensor will be determined
by considering the inertial transfer of TKE. We will combine Lilly’s (1967) approach
to determining the Smagorinsky constant with that of Leslie & Quarini (1979) and
Mason & Thomson (1992) for estimation of the energy backscatter.

To make the analytical procedure possible we adopt some common assumptions.
We consider locally isotropic high-Reynolds-number turbulence in equilibrium. In
this case the TKE production is balanced by dissipation. Furthermore we assume
that due to the separation between the energy-producing scales of motion and
dissipative scales the inertial subrange is developed and the energy spectrum follows
Kolmogorov’s −5/3 scaling law. We separate the large-scale from the small-scale
component of the total flow field by defining the isotropic wave cut-off filter with the
cut-off wavenumber kc in the inertial subrange. Ideally the cut-off wavenumber will be
sufficiently far from both maxima of the TKE dissipation and the TKE production.
In statistical equilibrium the total dissipation of TKE by the small unresolved scales
of motion is balanced by the influx of TKE due to the inertial transfer by the energy
cascade mechanism

〈ε〉 = T (kc). (4.1)

Here, ε is the the dissipation rate. In the spirit of Lilly’s development, the ensemble
average is approximated by the volume average corresponding to the smallest possible
volume for which the statistical stability is still guaranteed. The input of TKE in
the small-scale field due to the inertial transfer through the cut-off wavenumber kc
is denoted by T (kc) and defined as the integral of the inertial transfer spectrum
(cf. McComb 1990, equation (2.119)) from the wavenumber zero to the cut-off
wavenumber.

It should be pointed out that T (kc) also includes the local reverse flow of energy
from small to large scales due to the interactions with the modes with wave-vector
magnitude greater than the cut-off wave vector magnitude kc. If the forward and
backward components of the inertial transfer of energy are separated we can write

〈ε〉 = T (kc) = [Cf(kc)− Cb(kc)]〈ε〉 ∀ kc in inertial range. (4.2)

Here, Cf(kc) is the coefficient of the forward scatter of energy while Cb(kc) denotes
the backscatter. Both of these quantities are positive semi-definite and from (4.2) the
forward scatter is always greater than the backscatter

Cf(kc)− Cb(kc) = 1 ∀ kc in inertial range. (4.3)

In LES the inertial transfer of energy T (kc) between resolved and subgrid scales is
accounted for by the SGS term. When using an absolutely dissipative SGS model,
the backscatter parameter is implicitly set to zero and consequently the forward-
scatter parameter is set to one. However, the analysis of the nonlinear interactions in
wave space as well as DNS results show that the backscatter parameter is non-zero.
The consequence of setting Cb = 0 is that the model parameters can be uniquely
determined by TKE balance considerations.

The backscatter parameter Cb was first defined by Leslie & Quarini (1979, equation
(4.8)) and later used by Mason & Thomson (1992). Leslie & Quarini computed
this parameter using eddy damped quasi-normal Markovian (EDQNM) statistical
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turbulence theory and found that for the wave cut-off filter the value of this parameter
varies between 1.4 and 0.4, depending on the shape of the TKE production spectra.
For the input of TKE at the zeroth mode, only the highest value of 1.4 was obtained.
Mason & Thomson (1992) used this value in their backscatter model. Schumann
(1995) determined the upper limit for the value of the backscatter parameter for his
stochastic backscatter model at 0.43. Using the non-local EDQNM approximation
he also found that Cb = 0.176 when the filter is smooth and only the largest
scales experience backscatter. Domaradzki et al. (1993) computed the forward and
backward scatter of energy from their DNS of a Taylor–Green vortex, and for
different values of the cut-off wavenumber found that the ratio of the backscattered
TKE to the forward-scattered TKE increases by increasing the cut-off wavenumber.
When the backscatter parameter corresponding to their calculations is determined,
it varies between 1.06 and 2.83 depending on the cut-off wavenumber. The higher
value of the backscatter parameter corresponds to the higher cut-off wavenumber
of 40 while the lower value corresponds to the cut-off wavenumber of 20. The
DNS used for this analysis provided the maximum wave number of 170. The DNS
was a low-Reynolds-number simulation and the inertial range was not developed.
The dissipation rate peaked at wavenumber 20 which means that in both cases
the cut-off wavenumber was in the dissipation range. We therefore conclude that
by using DNS results we are not able to predict the behaviour of the backscatter
parameter in high-Reynolds-number flows. However, if we compare DNS results to
those obtained by EDQNM we can expect the backscatter parameter to decrease
further when the cut-off wavenumber falls between the TKE spectrum peak and
the dissipation rate peak. Therefore the lower value of the backscatter parameter
seems more representative of the values that can be expected when the cut-off
wavenumber is in the inertial range. Such reasoning is supported by the results
of EDQNM theory calculations of Leslie & Quarini with a broad-band production
spectra.

To determine the nonlinear model parameters we start with the SGS kinetic energy
balance for the isotropic turbulence in equilibrium

〈ε〉 = −〈σijSij〉. (4.4)

Introducing the SGS stress model in (4.4), the following equation is obtained:

〈ε〉 = (Cs∆)2

〈
2
(
(2SmnSmn)

1/2SijSji + C1SikSkjSji
)〉
. (4.5)

The second term on the right-hand side of (4.5) includes both isotropic and anisotropic
components of the tensor SikSkj , while our model given by equation (3.3) or (3.4)
includes only its anisotropic component. The contribution of the isotropic compo-
nent to the transfer of energy is identically zero since 1

3
(SmnSmn) δij Sij ≡ 0 ⇒(

SikSkj − 1
3
SmnSmn δij

)
Sij ≡ SikSkjSij . The component of the nonlinear SGS model

involving the rotation rate tensor does not appear in the TKE energy balance (4.5)
since a contraction of a symmetric by an antisymmetric tensor is identically zero,
SikΩkjSij ≡ ΩikSkjSij ≡ 0.

We will find relation between the model parameters – the Smagorinsky constant,
Cs, and the nonlinear model parameter, C1 – and the backscatter parameter Cb.
Assuming isotropic turbulence, the contribution of the linear component of the SGS
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model to the inertial transfer can be related to the velocity derivative (Lilly 1967;
Tennekes & Lumley 1972)

〈SijSij〉 =
30

4

〈(
∂ur1
∂x1

)2〉
. (4.6)

The last term on the right-hand side of equation (4.5) can be related to the determinant
of the strain rate tensor, which can in a general three-dimensional flow be either
positive or negative, unlike the second invariant SijSij which is positive semi-definite
for any flow except uniform-velocity laminar flows, when it vanishes. It is important
to notice that in the case of two-dimensional flow the nonlinear term’s contribution
to the energy balance vanishes since in that case det(Sij) = 0. In the case of isotropic
turbulence the third invariant can be directly related to the enstrophy production by
the vortex stretching. For flows with non-zero enstrophy production the determinant
of the strain rate tensor is always negative. Expanding the determinant of the strain
rate tensor and using the isotropic form of a general sixth-order tensor (see the
Appendix in Champagne 1978) it is easy to show that

〈SikSkjSij〉 =
105

8

〈(
∂ur1
∂x1

)3〉
=

3

4
ωr
i ω

r
j

∂uri
∂xj

. (4.7)

From (4.7) it follows that in the case of enstrophy production characterized by a
negative term on the far right-hand side, the third invariant of the strain rate tensor
is negative.

By analogy to the skewness factor (cf. Bachelor 1953) we define a skewness function
S(kc) as a skewness factor of the resolved velocity field, as such a function of the
wave cut-off number

S(kc) = −
〈(

∂ur1
∂x1

)3〉/〈(
∂ur1
∂x1

)2〉3/2

. (4.8)

Notice that when kc → ∞ then S(kc) ≡ s, where s is the skewness factor. Now we
can relate the linear and the nonlinear SGS contribution to the inertial transfer of
energy as well as to each other. Introducing the skewness function is justified by
the fact that it enables us to relate the third to the second moment of the resolved
velocity derivative and thus simplify the modelling procedure. The skewness function,
S(kc), of a resolved velocity field in isotropic turbulence is a measurable quantity.
It is a function of the cut-off wavenumber only. Enstrophy production peaks in
the inertial range and therefore we can expect that with the cut-off wavenumber
in the inertial subrange, the skewness function S(kc) assumes a value comparable
to that of the skewness factor s based on the total field. In low-Reynolds-number
laboratory experiments the skewness factor is estimated to be 0.4 (Bachelor 1953)
while experiments in the atmosphere give the value of 0.8 (Wyngaard & Tennekes
1970; Champagne 1978). Wyngaard & Tennekes (1970) argued that the skewness
factor is Reynolds-number dependent.

The physical significance of the skewness factor is that it can be viewed as a non-
dimensional measure of the rate of enstrophy production by vortex stretching induced
by shear (Bachelor & Townsend 1947). It is obvious that to produce enstrophy
by vortex stretching, the skewness factor must be positive. Vortex stretching is a
mechanism underlying the cascade of energy and therefore the implicit inclusion of
the skewness factor in the nonlinear model can be viewed as a desirable feature of
any SGS parameterization.
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The velocity derivative correlation in the denominator of the expression for the
skewness function (4.8) can be determined in relation to the energy spectrum. The
velocity-gradient correlation tensor for isotropic turbulence can be related to the
energy spectrum (Bachelor 1953) so that〈

∂uri
∂xj

∂urm
∂xn

〉
=

∫
k

k6kc

kjkn
E(k)

2πk2
(−kikm + δimk

2) dk. (4.9)

Here, E(k) is the spectrum shape for the isotropic turbulence. For the second equality
we used the general isotropic form of the energy spectral density and assumed
reflectional symmetry. Now, we invoke Kolmogorov’s (1941) scaling law in the
wavenumber form

E(k) = CK 〈ε〉2/3 k−5/3. (4.10)

Using the spectrum shape (4.10), setting indices i, j, m, n in equation (4.9) equal to 1,
and integrating over spherical shells defined by k = const, the following expression is
obtained: 〈(

∂ur1
∂x1

)2〉
= 1

10
CK 〈ε〉2/3 k4/3

c . (4.11)

Using the expression for the skewness function and (4.11), the third and the second
moments of the velocity derivative can be related to the resolved strain rate tensor
magnitude:〈(

∂ur1
∂x1

)3〉
= −S(kc)

〈(
∂ur1
∂x1

)2〉3/2

= −S(kc)
(

1
10
CK
)3/2 〈ε〉 k2

c . (4.12)

Introducing these equalities into (4.5) and assuming that 〈(SmnSmn)1/2SijSij〉 ≈ 〈SklSkl〉3/2
when the ensemble average is approximated by the grid volume average (Lilly 1966)
results in the following expression for the ensemble-averaged dissipation rate:

〈ε〉 = (Cs∆)2

[
1− 7

9601/2
C1 S(kc)

] (
3
2
CK
)3/2

k2
c 〈ε〉. (4.13)

The cut-off wavenumber can be related to the grid size ∆ so that kc = π/∆. After
dividing through (4.13) by the ensemble-averaged dissipation rate and introducing an
expression for the cut-off wavenumber kc as well as the experimentally determined
value for the Kolmogorov constant CK ≈ 1.5 = 3/2, we can express the model
parameters as functions of the backscatter parameter and the skewness function:

Cs =

[
8 (1 + Cb)

27 π2

]1/2

. (4.14)

Similarly the nonlinear model parameter C1 is

C1 =
9601/2 Cb

7 (1 + Cb) S(kc)
. (4.15)

Only the nonlinear term parameter C1 depends on both the backscatter parameter
and the skewness function. The backscatter parameter is positive semi-definite. Owing
to the prevalence of the enstrophy production by vortex stretching compared to the
enstrophy destruction, the skewness function is almost always positive when the cor-
responding cut-off wavenumber is in the inertial range. It follows that the nonlinear
model parameter C1 will almost always be positive. Consequently the ensemble-mean
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Figure 1. Model parameters: (a) Smagorinsky constant, (b) nonlinear model parameter.

contribution of the nonlinear term to the energy balance is either negative or it van-
ishes. In contrast to the linear SGS term which on average contributes to the forward
cascade of energy, the nonlinear term on average contributes to the backscatter of
energy. We are not aware of any direct way to determine the backscatter parameter
based on any of the fundamental principles even in the most simple case of isotropic
turbulence. We will therefore use the backscatter parameter as the fundamental
model parameter, assuming that it is relatively insensitive to the cut-off wavenumber
as long as the cut-off wavenumber is in the inertial range. However, we can expect
it to depend on the level of anisotropy of the flow field. The Smagorinsky constant
and the nonlinear model parameter C1 as functions of the backscatter parameter are
shown in figure 1. It is obvious that for a given range, the Smagorinsky constant
is only a weak function of the backscatter parameter, unlike the nonlinear model
parameter.

This analysis was based on the assumption that the resolved velocity field is
isotropic. In most applications of interest this is not the case and therefore the results
of our analysis represent the limiting case which our model has to satisfy. We expect
the backscatter parameter in anisotropic flows to differ from the values obtained
under the assumption of isotropy. The actual value of the backscatter parameter will
be determined by a numerical experiment.

We have seen that the second model parameter C2 cannot be determined from
the TKE considerations, since the terms involving the rotation rate tensors do
not contribute to the TKE balance. Therefore we have to consider their effects
on the SGS stresses. There is a large body of experimental evidence that the
anisotropic component of the turbulent stress in sheared turbulence displays notable
differences in its normal stress components (Rose 1966; Tavoularis & Corrsin 1981;
Rogers & Moin 1987) – these are so-called normal stress effects similar to those
characteristic for non-Newtonian fluids. In order to extend those ideas to modelling
SGS stresses, we adopt a simplified picture according to which the turbulent SGS
flow field is locally subjected to the resolved shear in the same way that mean
simple shear affects the homogeneous turbulent flow field. This will allow us to
use the measured values of normal turbulent stresses in homogeneous turbulence
subjected to the simple shear to determine the second nonlinear model parameter
C2.

We use the values of the normal turbulent stress components measured by Rose
(1966). The isotropic component of the turbulent stress is subtracted and the following
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values for the diagonal components of the anisotropic turbulent stress normalized by
the TKE (denoted by bαα) are obtained:

b11 ≈ 0.116̇ =
35

300
; b22 ≈ −0.03̇ = − 10

300
; b33 ≈ −0.083̇ = − 25

300
. (4.16)

In more recent measurements Tavoularis & Corrsin (1981) and De Souza, Nguyen
& Tavoularis (1995) obtained slightly higher absolute values of the diagonal compo-
nents of the anisotropic turbulent stress. However, we use only the ratios of these
components to determine the model parameters and these ratios are approximately
the same in all the measurements.

In the case of simple shear the resolved strain rate tensor Sij and the corresponding
rotation rate tensor Ωij are

Sij =
1

2

dur1
dx3

(
0 0 1
0 0 0
1 0 0

)
; Ωij =

1

2

dur1
dx3

(
0 0 1
0 0 0
−1 0 0

)
. (4.17)

After introducing the strain rate and the rotation rate tensors corresponding to the
simple shear into the nonlinear model (3.4) and requiring that the ratios of modelled
normal stress components be the same as the ratios of measured stress components
(4.16) it follows that the model parameters C1 and C2 must be approximately equal:

C2 ≈ C1. (4.18)

If the anisotropic normal stress components are defined exactly as the fractions in
equation (4.16) then C2 = C1. Although we resorted to a heuristic argument and used
the measured ratios of normal turbulent stresses to determine the model parameters
for the SGS stresses, we can argue that such an approach is justified in the presence
of the strong mean shear characteristic of surface layers of atmospheric boundary
layers. Finally we conclude that the proposed nonlinear model along with the
Smagorinsky constant can be characterized by only one additional parameter – the
backscatter parameter, Cb. The backscatter parameter is the only free parameter that
remains to be determined in the nonlinear SGS model. Lacking a theoretical basis
we combine the empirical results obtained using DNS and EDQNM analysis with
numerical experiments to determine the optimal value for the backscatter parameter.
The results of this procedure are presented in the following section.

5. LES of a shear-driven atmospheric boundary layer
To test the nonlinear SGS model we perform an LES of a neutral shear-driven

atmospheric boundary layer. We compare the results obtained using the linear
model defined by (2.9) to those obtained by using the nonlinear SGS models defined
by (3.4). In both cases an additional equation (2.13) for the evolution of SGS
kinetic energy was integrated along with the resolved momentum equation (2.1).
The eddy viscosity for the linear model was determined using (2.12). The resolved
field equations were spatially discretized using the algorithm developed by Moeng
(1984), with pseudo-spectral decomposition for horizontal homogeneous directions
and central differences for the vertical. Instead of the Adams–Bashforth scheme
used by Moeng (1984) we used the fourth-order Runge–Kutta scheme to integrate
the equations in time. The approximate boundary condition based on the Monin–
Obukhov similarity relationship (Moeng 1984) was implemented at the surface while
the stress-free boundary condition was imposed at the upper free-flow boundary.
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The flow was driven by the mean pressure gradient corresponding to a 10 m s−1

geostrophic wind in the stream-wise direction with no cross-stream component at
45◦ North. The surface roughness length was 0.1 m. The resulting time-averaged
surface friction velocity u∗ was approximately 0.48 m s−1. The computational domain
was 4000 m × 2000 m × 1500 m, discretized by 403 and 603 grid points distributed
uniformly in each direction. The domain size, initial conditions and the domain
resolution were the same as in Andrén et al. (1994), so that our results could
be compared to those obtained from three different LES codes (Schumann 1975;
Moeng 1984; Mason & Thomson 1987) which were presented by Andrén et al.
(1994).

The nonlinear model parameters are determined by first choosing the appropriate
backscatter parameter. The backscatter parameter can be determined using the DNS
analysis or EDQNM calculations. Since the backscatter parameter is greater than
zero the Smagorinsky constant will always attain a value greater than that estimated
by Lilly (1967). Lilly’s values for the Smagorinsky constant for different filters can
be viewed as lower limits when Cb = 0. This may seem to be in contradiction to the
results of numerical simulations which suggest that Lilly’s value for the Smagorinsky
constant is too large, yielding an SGS model that is too dissipative. However, those
models could not account for the backscatter of energy. We started by assuming the
value of the skewness function as S(kc) = 0.5 and choosing the backscatter parameter
Cb = 0.4 that corresponds to the wide-band production spectra in EDQNM of
Leslie & Quarini (1979). This value of the backscatter parameter appeared to be
too high, yielding an incorrect mean velocity profile. To determine the optimal
value of the backscatter parameter we conducted a numerical experiment. We
carried out five LES of shear-driven boundary layers and varied only the value
of the backscatter parameter. In the first simulation we set Cb = 0.4 and then
decreased it by 0.02 in consecutive simulations. Finally we conducted an LES
with Cb = 0.3. We observed the effects of varying the backscatter parameter on
the global statistics of the turbulent flow field, focusing our attention primarily
on the mean velocity profiles. The numerical experiment showed that the optimal
value of the backscatter parameter is Cb = 0.36. Because (4.14) and (4.15) are
based on the isotropy assumption, the backscatter parameter value obtained using
the numerical experiment does not imply that exactly 36% of dissipated energy is
actually backscattered. The model parameters Ce and C1 are then determined using
(4.14), (3.5) and (4.15).

All simulation runs were ten hours or 3.6f−1 in non-dimensional time units. The
results presented here represent ensemble averages over 300 data sets stored every
minute during the last five hours (1.8f−1) of the simulation runs. The iteration history
of the resolved TKE as a function of time is shown in figure 2. The spin-up time for
the nonlinear model is much shorter due to the backscatter effects. A fraction of the
kinetic energy initially residing at small unresolved scales of motion is transferred to
the large scales of motion through the nonlinear component of the SGS term. The
nonlinear model results in much smaller TKE fluctuations than the linear model and
therefore can be viewed as providing a more stable simulation.

Earlier we pointed out that the efficiency of the SGS model should be judged
according to how well the LES reproduces the global statistics of the flow field. In
the shear-driven atmospheric boundary layer (ABL) case the theoretical prediction
for the mean velocity profile has been confirmed by the experiment. According to the
Monin–Obukhov theory the mean wind shear in the surface layer of the shear-driven
ABL is a function of the surface stress u∗, and the distance from the surface z, with
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Figure 3. Non-dimensional shear (403 grid points), Φm = u∗/(κz).

a constant of proportionality 1/κ where κ is von Kármán’s constant. It follows that
the non-dimensional shear Φm is unity:

∂U

∂z
=
u∗

κz
⇒ Φm =

κz

u∗

∂U

∂z
= 1. (5.1)

Monin–Obukhov theory has been experimentally confirmed in a number of field
experiments starting with the Kansas experiment (Businger et al. 1971) and represents
one of the most firmly established results against which LES and new SGS models
should be compared. The non-dimensional shear Φm is shown in figure 3. In addition
to the results obtained using our LES algorithm with the linear and the nonlinear SGS
model we plot the results of Andrén et al. obtained using the stochastic-backscatter
model. The mean wind shear differs significantly between these models. While the
non-dimensional shear obtained using the linear model exhibits the characteristic
overshoot observed by Mason & Thomson (1992) as well as Sullivan et al. (1994),
the nonlinear model with the backscatter parameter Cb = 0.36 follows closely the
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Figure 4. Tangential turbulent stresses: (a) linear SGS model, (b) nonlinear SGS model.
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Figure 5. Tangential SGS stress components: (a) linear SGS model, (b) nonlinear SGS model.

predictions of the Monin–Obukhov theory and experimental results. In accordance
with theory it results in a vanishingly small first derivative of the non-dimensional
shear at the surface. We point out that when using the nonlinear model with Cb > 0.36
the non-dimensional shear in the surface layer was underestimated (Φm < 1) while
for Cb < 0.36 the non-dimensional shear was overestimated (Φm > 1).

The reasons for the improvement in prediction of the mean shear can be detected
by analysing the resolved and SGS TKE, corresponding turbulent stresses and the
TKE budgets. The profiles of the total (resolved + subgrid) tangential turbulent
stresses are show in figure 4. Both linear and nonlinear model simulations result in a
full almost linear profile of the 〈uw〉 stress component, as predicted by theory. While
the tangential stress component 〈vw〉 is almost identical in both simulations, the
difference between simulations with the linear and nonlinear models is pronounced
in the profiles of the 〈uv〉 stress component in the layer adjacent to the surface
layer. However, the general trends are approximately the same and the more accurate
profile of the stress component 〈uv〉 obtained using the nonlinear SGS model may
be attributed to the more accurate prediction of the mean shear. It is interesting
to notice that the tangential SGS stresses (figure 5) do not exhibit any significant
differences between the two simulations. This was expected since the nonlinear model
was designed to reproduce the normal stress effects and not to affect the tangential
stresses.

To examine how the nonlinear model affects normal stresses we first plot the profile
of the total TKE (figure 6). We observe that when the nonlinear model is used the
TKE profile is almost linear, unlike the corresponding profile obtained with the linear
model. In addition the TKE level in the surface layer is 30% lower for the nonlinear
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Figure 6. Total and subgrid TKE profiles: (a) linear SGS model, (b) nonlinear SGS model.
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Figure 7. Normal stress components: (a) linear SGS model, (b) nonlinear SGS model, (c)
stochastic backscatter model (results from Andrén et al. 1994).

model simulation. We examine these features more closely by comparing the total
normal turbulent stress components (figure 7) and notice two major differences. When
the nonlinear model is used the maximum of the streamwise normal stress component
is 30% less than when the linear model is used and is essentially a linear function of
the distance from the surface. The vertical normal stress component is almost identical
in both simulations. In addition we plot normal stresses obtained using the stochastic-
backscatter model by Andrén et al. (1994) (figure 7c). The backscatter model results
in all three normal stress components near the surface being larger than when the
other two models are used. The shape of the profiles and the relative magnitudes of
the components are similar to those obtained using the linear model. All observed
differences are solely the consequence of the differences in the SGS models. We
developed the nonlinear SGS model to account for the effects of anisotropy due to
the shear. The effects of shear and the associated intrinsic vorticity are manifested
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Figure 8. Anisotropic normal SGS stress components: (a) linear SGS model, (b) nonlinear SGS
model, (c) stochastic backscatter model (results from Andrén et al. 1994).

as Coriolis effects that are responsible for increased anisotropy levels among normal
SGS stress components. We can therefore expect that the observed differences are the
consequence of the differences among the normal components of the SGS stresses.
The profiles of the anisotropic normal SGS stress components reveal (figure 8) that
the linear model is not capable of reproducing the normal stress effects. While the
linear model results in almost vanishing anisotropic normal stress components, the
nonlinear model produces a streamwise component with near the surface maximum
of almost 50% of the surface stress. At the same time the cross-stream and vertical
components are non-zero and exhibit a more complex behaviour as a function of
the distance from the surface. From the results of Andrén et al. we computed the
anisotropic components of normal subgrid stresses obtained using the backscatter
model. These profiles are shown in figure 8(c) and we notice that near the surface
they are similar to those obtained using the nonlinear model while above the surface
layer they exhibit the sign change.

The TKE budgets shown in figure 9 reveal that the nonlinear model results in
a significant reduction of the TKE transport. In the same time a most important
difference can be observed in the dissipation rate profile or more precisely in the
rate of inertial transfer of energy toward the unresolved scales of motion. When the
linear SGS model is used the inertial transfer peaks at the surface while the nonlinear
model causes an elevated maximum at some height above the surface corresponding
to the level of maximum TKE production. This may seem to contradict the usually
accepted picture whereby the inertial transfer toward unresolved scales peaks at the
surface. While it is obvious that the actual dissipation rate caused by the viscous
effects must have a maximum at the surface, the inertial transfer in LES does not have
to behave in the same way. Since in the surface layer the TKE production mechanism
is not completely resolved we can expect an increased energy backscatter level in that
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Figure 10. Linear and nonlinear term contributions to the rate of inertial transfer of TKE
(dissipation and backscatter).

region. This backscattered energy will in turn cause an apparent reduction of the
inertial transfer rate. Whether this actually happens when a nonlinear model is used
can be observed by separating the inertial transfer due to the linear component of the
nonlinear SGS model from the contribution of the nonlinear component. Figure 10
clearly shows that such an elevated inertial transfer rate maximum is indeed caused
by the backscatter which balances the forward cascade of TKE at the levels adjacent
to the surface.

We examine the boundary layer structures using two-dimensional correlation func-
tions. In figure 11 we compare the streamwise velocity correlation functions obtained
using the linear and nonlinear SGS models. Although the streamwise velocity does
not decorrelate itself in the given domain, a feature commonly observed not only in
computations (Mason & Thomson 1987) but also in the laboratory experiments, a
striking difference in the size of the structures associated with the higher correlation
values (greater than 0.2) can be observed near the surface (zf/u∗ = 0.05). No such
difference is observed at zf/u∗ = 0.2 (figure 12) or in the cross-stream velocity corre-
lation at any level (figure 13 and figure 14). However, the vertical velocity correlation
function displays features similar to the streamwise one. While the linear SGS model
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Figure 11. Streamwise velocity correlation function at zf/u∗ = 0.05: (a) linear SGS model,
(b) nonlinear SGS model.
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Figure 12. Streamwise velocity correlation function at zf/u∗ = 0.2: (a) linear SGS model,
(b) nonlinear SGS model.
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Figure 13. Cross-stream velocity correlation function at zf/u∗ = 0.05: (a) linear SGS model,
(b) nonlinear SGS model.

results in elongated structures near the surface, the nonlinear model produces smaller
more isotropic structures (figure 15). Away from the surface both models produce
similar vertical velocity structures (figure 16).

We performed a higher-resolution simulation with 603 grid points to test the non-
linear model for resolution dependence and to analyse characteristic flow structures
in more detail. The non-dimensional shear for the same initial and boundary con-
ditions representing the average over the same time period, but for the increased
resolution, is given in figure 17. It is obvious that the increased resolution result is
in good agreement with theory and does not differ significantly from those obtained
with lower resolution. We compare the streamwise velocity structures in horizontal
planes in the surface layer obtained using the linear and nonlinear models (figure 18).
The linear model simulation exhibits streaky streamwise velocity structures aligned
with the mean wind. Such slow and fast streaks were also observed by Mason &
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Figure 14. Cross-stream velocity correlation function at zf/u∗ = 0.2: (a) linear SGS model,
(b) nonlinear SGS model.
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Figure 15. Vertical velocity correlation function at zf/u∗ = 0.05: (a) linear SGS model,
(b) nonlinear SGS model.
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Figure 16. Vertical velocity correlation function at zf/u∗ = 0.2: (a) linear SGS model,
(b) nonlinear SGS model.

Thomson (1987) and Moeng & Sullivan (1994) in their simulations which utilised
linear SGS models. In comparison, the LES with the nonlinear SGS model exhibits
strikingly different flow structures. Although we can observe some poorly defined
narrow and elongated fast streaks they are not aligned with the mean velocity vec-
tor and it is difficult to confirm their coherence. The one-dimensional streamwise
spectra of three velocity components computed at three levels above the surface,
zf/u∗ = 0.02, 0.05, 0.1, are presented in figures 19–21. The spectra are averaged in
time over the last five hours of the simulation and in space over the cross-steam flow
direction. These spectra illustrate further the difference between simulations with the
linear and the nonlinear SGS model. When the linear SGS model is used the spectra
of all three velocity components corresponding to the lowest level zf/u∗ = 0.02 drop
off steeply with increasing wavenumber, indicating the dominance of larger struc-
tures. This confirms earlier observations based on the contour plots of the streamwise
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Figure 18. Streamwise velocity contours at zf/u∗ = 0.05: (a) linear SGS model, (b) nonlinear SGS
model. Solid line - positive fluctuating velocity, dashed line - horizontal mean velocity, dotted line -
negative fluctuating velocity.

velocity as well as two-dimensional correlation functions. The simulation with the
nonlinear SGS model produces spectra without such a steep drop-off and the spectral
peak is shifted toward larger wavenumbers corresponding to smaller scales of motion.
As a reference we plot on figures 19–21 the inertial-range k−2/3 line. Although the
resolution of the simulation is not sufficient to observe an extended inertial range
the nonlinear SGS model results in a closer fit to the inertial range spectra than the
linear SGS model.

In order to determine the values of nonlinear model parameters we assumed the
experimental value of the skewness factorS(kc) = 0.5. The skewness factor as defined
by equation (4.8) represents an unambiguous measure of vortex stretching only in the
isotropic case. However, we can define the ratio of the third and the second invariants
for the strain rate tensor multiplied by a factor of (9/8)1/2 as a generalized skewness
function, Sg(kc), which in the isotropic case reduces to the skewness function S(kc):

Sg(kc) = −〈SmrSrnSnm〉〈SmnSmn〉3/2
=

(
9

8

)1/2 〈III(Sij)〉
〈II(Sij)〉3/2

. (5.2)

The fact that the nonlinear model parameter is a function of the invariants of the
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100

10–1

10–2

10–3

10–1 100 101 102

zf/u*= 0.10
0.05
0.02

(a)
k 1

 F
11

 (
k 1

)

k1 L1/(2p)
10–1 100 101 102

k1 L1/(2p)

(b)

Figure 19. Streamwise velocity spectra at three levels above the surface (zf/u∗ = 0.02, 0.05, 0.1): (a)

linear SGS model, (b) nonlinear SGS model; the dotted line represents the inertial range k−2/3 line.
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Figure 20. As figure 19 but for cross-stream velocity spectra.
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Figure 21. As figure 19 but for vertical velocity spectra.

strain rate tensor is consistent with the constitutive theory. The relation (5.2) can
be viewed as a non-dimensional ratio of the ensemble average of the rate of inertial
transfer of TKE to the corresponding TKE dissipation rate. The generalized skewness
corresponding to the shear-driven ABL flow simulation is given in figure 22(a). The
nonlinear model gives a somewhat higher value of the generalized skewness factor
than the linear SGS model. The generalized skewness starts from the value of zero
near the surface and then fast approaches a nearly constant value of slightly above
0.3. Using (4.6) and (4.7) we can compute the corresponding value of the skewness
function of approximately 0.5 for the isotropic turbulence.

We determined the value of the backscatter parameter by numerical experiment
and found that the optimal value of the parameter for the high-Reynolds-number
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Figure 22. (a) Generalized skewness function, (b) backscatter parameter.

boundary layer simulation is Cb = 0.36. Since this value corresponds to the isotropic
case and our ABL flow is neither isotropic nor homogeneous we can expect that
the effective value of the backscatter parameter computed from the simulated flow
field does not differ significantly from the estimated value. The effective backscatter
parameter, Cbe, can be determined from the following relation:

Cbe =
2(Cs∆)2(2SmnSmn)

1/2SijSij − 〈ε〉
〈ε〉 . (5.3)

The dissipation rate 〈ε〉 is computed using equation (4.1). The profile of the effective
backscatter parameter (figure 22b) displays a sharp peak at the value of 0.55 near
the surface and monotonically decreases with increasing distance from the surface,
levelling off at the value of 0.2. The effective value of the backscatter parameter is
close to the specified value Cb = 0.36 and to the value estimated using EDQNM
theory for the broad-band production spectra. We can therefore conclude that the
modelling problem for the nonlinear SGS model used in anisotropic and inhomoge-
neous turbulence LES can be reduced to determining the backscatter parameter for
the isotropic turbulence which will give the desired value of the effective backscatter
parameter in an actual (anisotropic and inhomogeneous) flow.

We point out that according to the Taylor–Proudman theorem (cf. Dutton 1995),
flows in rotational frames characterized by a high Rossby number become two-
dimensional, confined to the plane perpendicular to the axis of rotation. Since the
skewness function vanishes in two-dimensional flows the nonlinear model parameter
C1 defined by (4.15) would exhibit singular behaviour for a finite value of the
backscatter parameter. Moreover, as it was noted earlier, in the two-dimensional
case the SGS stress model should be frame indifferent. A necessary and sufficient
condition for frame indifference is that the nonlinear term, which includes the rotation
rate tensor, vanishes. This can be accomplished by setting C2 = 2S(kc)C1 so that the
nonlinear model parameter C2 approaches zero in the limit of a two-dimensional flow.
At the same time the parameter C1 must be finite. The finiteness of C1 is guaranteed
if the lowest-order term in a power series expansion of the backscatter parameter
in terms of the skewness function vanishes so that Cb = a1S(kc) + a2[S(kc)]

2 + . . ..
A backscatter parameter of this form results in a nonlinear model consistent with
the frame indifference requirements in a two-dimensional flow limit. Determining the
exact dependence of the backscatter parameter on the skewness function is a task
that goes beyond the scope of this paper.
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6. Discussion and conclusions
It has been recognized that the SGS model represents a limiting factor for the suc-

cessful LES of high-Reynolds-number boundary layer flows. Two different approaches
to solving the SGS problem have recently been proposed (Mason & Thomson 1992;
Sullivan et al. 1994), both resulting in important improvements. However, questions
about the true nature of the SGS problem in surface layers of the high-Reynolds-
number boundary layers have remained open. Our goal was to focus on the critical
element of the SGS model in order to develop a more consistent and efficient SGS
model for such shear-driven flows.

We started our analysis of the SGS effects in the LES of high-Reynolds-number
boundary layers by showing that only the fluctuating component of the SGS stress
can affect the mean velocity profile. We showed that the SGS stress tensor is not frame
indifferent and argued that the Coriolis effects caused by the intrinsic vorticity can
increase the anisotropy level among the normal SGS stress components. Therefore
we argued that the SGS models have to capture the effects of inertial transfer
including backscatter of energy as well as its redistribution among the normal SGS
stress components. The backscatter is the consequence of nonlinear interactions
while the redistribution of SGS TKE is the consequence of anisotropy induced by
shear.

To develop an SGS model able to reproduce the effects of anisotropy and that is
easy to implement and computationally inexpensive, we adopted a phenomenological
approach based on the nonlinear constitutive theory for viscous stresses. Models based
on the nonlinear constitutive theory do not satisfy the second law of thermodynamics.
They can result in a local backscatter of energy. At the same time they can account
for the normal stress effects. We therefore developed a simple nonlinear extension
to the classical Smagorinsky model and argued that it represents a viable choice for
modelling SGS stresses. To determine the model parameters analytically, we analysed
the isotropic case and the homogeneous shear flow case.

We implemented the nonlinear model in an LES of a shear-driven ABL and showed
that unlike the linear model it yields the experimentally observed and theoretically
predicted mean velocity profile. Furthermore application of the nonlinear model
resulted in a significant redistribution of TKE among SGS normal stress components.
The nature of the nonlinear model is such that it was impossible to isolate the cause
and unambiguously determine whether its ability to reproduce the backscatter of
energy or normal stress effects was crucial to achieve the observed improvements.
Our analysis indicates that for the nonlinear model both of these characteristics were
equally important. This confirms the basic premise that no adjustment of the linear
model parameters (eddy viscosity, Smagorinsky constant) can result in improved LES
of high-Reynolds-number boundary layers.

We explored the characteristic flow structures in the ABL by analysing the two-
dimensional correlation function for the velocity components as well as instantaneous
velocity fields. The analysis revealed that in comparison to the linear model (Sullivan
et al. 1994), the nonlinear model significantly reduces the size of the streamwise
velocity (slow and fast) streaks as well as the vertical velocity structures in the surface
layer. Pronounced elongated streaks were also observed experimentally (Kim, Klein &
Reynolds 1971) and in numerical simulations (Moin & Kim 1982) in viscous sublayers
of moderate-Reynolds-number boundary layer flows. We therefore argue that their
presence in the LES of an ABL can be attributed to the low-Reynolds-number effect
induced by the linear SGS model.

The nonlinear SGS model developed and tested in this work is simple to implement
and computationally inexpensive. It is also consistent with the constitutive theory
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and satisfies basic requirements regarding the LES performance. We can therefore
conclude that this nonlinear model represents a good alternative for LES of high-
Reynolds-number boundary layer flows. Moreover we can expect this nonlinear
model to improve LES of stably stratified ABLs as suggested by Canuto & Minotti
(1993). These simulations have proven to be difficult due to the low level of TKE and
intermittent nature of the flow. Nonlinear models of different levels of complexity are
already extensively used in Reynolds stress closures for complex engineering flows.
Applying similar modelling concepts to SGS modelling may prove to be a viable path
toward efficient LES of complex engineering and geophysical flows.

This research was supported by a grant from NASA FIRE. The author would like
to express his deepest gratitude to Dr Judith A. Curry for her valuable comments.

Appendix A. Material frame indifference and the SGS stress tensor
The group of transformations is given by

x∗i = Qij(t) xj + ci(t). (A 1)

Then, velocity fields ũi transform under this group of transformations as

ũ∗i = Q̇ij xj + Qij ũj + ċi. (A 2)

Here, ċi denotes the time derivative of ci and Q̇ij denotes the time derivative of the
orthogonal rotation tensor Qij . The resolved component of the transformed velocity
field is defined as

ũ∗ri =

∫
G∗(x∗ − ξ) ũ∗i dξ. (A 3)

Ideally the filter function G(x) is isotropic and it does not change under the trans-
formation (A 1): (G∗(x) = G(x)). Also, since the transformation (A 1) is volume
preserving it follows that dx∗ = dx. Introducing equation (A 2) into (A 3) gives

ũ∗ri =

∫
G(x− ξ) [Q̇ijξj + Qijũj + ċi] dξ. (A 4)

After integrating the right-hand side the resolved component of the transformed
velocity is

ũ∗ri = Q̇ijxj + Qijũ
r
j + ċi. (A 5)

The corresponding subgrid velocity component is defined as

ũ∗si = ũ∗i − ũ∗ri . (A 6)

Then it follows that the subgrid velocity component transforms as

ũ∗si = Qijũ
s
j . (A 7)

The SGS stress is defined as

τij = (ũri ũ
r
j)
r − ũri ũrj +

[
(ũri ũ

s
j + ũsi ũ

r
j) + ũsi ũ

s
j

]r
. (A 8)

Similarly the transformed SGS stress is

τ∗ij = (ũ∗ri ũ
∗r
j )r − ũ∗ri ũ∗rj +

[
(ũ∗ri ũ

∗s
j + ũ∗si ũ

∗r
j ) + ũ∗si ũ

∗s
j

]r
. (A 9)

Any tensor Tij that satisfies material frame indifference transforms as

T ∗ij = QimQjnTmn. (A 10)
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The transformed SGS stress tensor can be obtained by rewriting equation (A 9) using
(A 5) and (A 7):

τ∗ij = QimQjn{(ũrmũrn)r − ũrmũrn +
[
ũrmũ

s
n + ũsmũ

r
n + ũsmũ

s
n

]r}
−Qimċj

[
ũrm − (ũrm)r − (ũsm)r

]
− Qjnċi

[
ũrn − (ũrn)

r − (ũsn)
r
]

−QimQ̇jn
[
xnũ

r
m − (ξnũm)r

]
− Q̇imQjn

[
xmũ

r
n − (ξmũn)

r
]

−Q̇imQ̇jn [xmxn − (ξmξn)
r] . (A 11)

The first term in braces on the right-hand side of (A 11) is the SGS stress tensor.
Notice also that ũrm = (ũrm)r + (ũsm)r , which renders the SGS stress invariant to the
extended Galilean group of transformations defined by x∗i = xi + ci(t). Here, we point
out that unlike any general filter the wave cut-off filter which is idempotent (i.e. when
ũri = (ũri )

r) and has the property that (ũsi )
r = 0, results in the SGS stress for which each

term is independently invariant to the extended Galilean group of transformations.
Now (A 11) reduces to

τ∗ij = QimQjnτmn −
[
QimQ̇jn + Q̇inQjm

] [
xnũ

r
m − (ξnũm)r

]
− Q̇imQ̇jn [xmxn − (ξmξn)

r] .
(A 12)

When we compare (A 12) to (A 10) we notice that it has additional non-vanishing
terms which means that the SGS stress tensor is not frame indifferent.

The sum of the normal components of the second term on the right-hand side
of (A 12) is 2 QimQ̇in[xnũ

r
m − (ξnũm)r]. Notice that QimQ̇in = εinmWi, where Wi is

the mean intrinsic vorticity related to the rotation rate with respect to an inertial
frame of reference and defined as Wi = 2ζi + 〈ω̃i〉. Then it follows that the normal
stress components due to the second term on the right-hand side of (A 12) are
2 Wαεαnm[xnũ

r
m − (ξnũm)r] (no summation over Greek indices). These components in

general differ from each other, resulting in the normal stress effects. We also notice
that the sum of these normal stress components is the dot product of the intrinsic
vorticity with the vector difference between the moment of the resolved momentum
and the resolved moment of momentum.

By taking the divergence of (A 12) we can examine the effects of the additional
terms on the right-hand side of (A 12) on the momentum conservation equation. Using
(A 1), (A 2) and since ∂/∂x∗j = Qjn∂/∂xn the divergence of (A 12) can be expressed as

Qim
∂τmn

∂xn
=
∂τ∗ij

∂x∗j
− εkljWk

{
(x∗l − cl)

∂ũ∗ri
∂x∗j
−
[
(ξ∗l − cl)

∂ũ∗i
∂ξ∗j

]r}
. (A 13)

The second term on the right-hand side of (A 13) can be viewed as arising from
Coriolis effects.
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